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a b s t r a c t

Multi-scale modeling approaches are developed to investigate the deformation mechanisms in iron-based
metallic glasses. The shear band formation and crack propagation in the iron-based metallic glasses are
investigated using a phase-field phenomenological model. The parameters which are necessary to the
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formulism of mesoscopic phase-field modeling, e.g., the surface energy, activation energy and elastic
constants related to the formation of free-volume defects, are obtained by ab initio molecular dynamics
simulations on an amorphous Fe80Si10B10 model system. The important features of shear banding such as
shear band width and crack propagation velocity obtained from the multi-scale modeling are consistent
with those of experiments. These results demonstrate that the mechanical behaviors of bulk metallic
glasses can be understood by the multi-scale modeling developed in this study.
omputer simulations

. Introduction

Although iron-based metallic glasses have been invented for
ore than 30 years [1], there are increasing interests in the iron-

ased bulk metallic glasses (BMGs) with typical sizes larger than
everal millimeters [2]. The iron-based BMGs are superior to their
MG counterparts because theoretically they would possess larger
trength and because their main content iron is relatively cheap.
owever they are very brittle [2] since the deformation of these
lassy alloys is localized in nature. For structural applications, iron-
ased BMGs with excellent combination of mechanical properties
ave to be developed based on the description, characterization and
rediction of their deformation behaviors. But up to date our under-
tanding of the deformation mechanisms of these glassy alloys is
ery limited and incomplete [3].

One of the major obstacles that prevent us from comprehen-
ive understanding of the deformation mechanism of glassy alloys
s their atomistic deformation defects [4]. Unlike crystalline iron
lloys, iron-based BMGs do not have dislocation defects during the
eformation process and the deformation is executed by the acti-
ation or creation of free-volume defects [5] within a region with
izes smaller than 1 nm, which is described as shear transforma-

ion zone (STZ) [6]. The shear banding is a result of the formation
r coalescences of STZs depending on the local stress states, tem-
erature, and other structural entities such as voids and chemical
eterogeneities.

∗ Corresponding author.
E-mail address: mmzheng@polyu.edu.hk (G.P. Zheng).

925-8388/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2010.02.165
© 2010 Elsevier B.V. All rights reserved.

Despite encouraging progresses in the characterization of STZ,
successful applications of the free-volume activation theory in
the description and modeling of various shear banding phenom-
ena observed in experiments are still very limit. In this study, we
develop multi-scale approaches to model shear band initialization
and propagation based on the quantitative descriptions of ener-
getics and kinetics of free-volume defects, using Fe–Si–B metallic
glass ribbon as an example. In the atomic scale, the surface energy,
activation energy and elastic constants related to the formation of
free-volume defects are obtained by ab initio molecular dynam-
ics (AIMD) simulations. These physical quantities are then used to
construct the energy landscape of a metallic glass consisting of free-
volume defects. Finally the shear banding in the deformed glassy
alloy is investigated by solving the kinetic governing equations or
phase-field equations of the system in the mesoscopic scale. The
shear banding behaviors in the atomic length scale and in meso-
scopic length scale are thus successfully bridged.

2. AIMD simulation on deformation behaviors of Fe–Si–B
metallic glasses

Simulation of Fe80Si10B10 metallic glass is performed using the
first-principles simulation code VASP [7]. Generalized gradient
approximation for the exchange-correlation energy and the spin-
polarized projector augmented-wave method is implemented.

Kohn-Sham single electron wave functions are expanded by plane
waves with well-converged cut-off energy of 400 eV. The supercell
contains 200 atoms and the period boundary conditions (PBC) are
used for all calculations. The Brillouin zone sampling consists of the
� point only. The metallic glass is prepared by quenching the melt

http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:mmzheng@polyu.edu.hk
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Table 1
Comparison of density �0, shear modulus �, bulk modulus B, Poisson’s ratio � and
magnetic moment per iron atom m between Fe–Si–B model system and experiments
[7,8].

�0 (kg/m3) � (GPa) B (GPa) � m (�B)
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Fig. 1. (a) Free energy and stress of the model Fe–Si–B glassy alloy under tensile
deformation. The inset is the schematic. The solid green line denotes the fracture
plane. Alloys at both sides of the plane are separated along the x-direction, and
AIMD simulation 7.383 60.1 161.4 0.33 2.05
Experiments 7.392 58.2 162.7 0.34 2.04

o room temperature. The starting configuration of the Fe–Si–B sys-
em for AIMD simulation is generated by classical MD simulation
f Fe–Si–B using hard sphere potentials. The system is first melted
t T = 1500 K for 5 ps and is then quenched to T = 650 K with a cool-
ng rate of 2 × 1014 K/s. The system with a density of 7.02 kg/m3

s maintained as undercooled liquid for 1.5 ps, following by the
uenching to T = 300 K with a quenching rate of 4 × 1014 K/s. All
he MD simulations are performed in the canonical (NVT) ensem-
le and Nose thermostat is used for temperature control. A stable
lassy Fe80Si10B10 system is finally obtained by the relaxations of
tomic coordinates and supercell volume using the conjugate gra-
ient algorithm at T = 0 K. The tolerances of 1.0 meV for maximal
hange in total energy and 10 MPa for maximal change in stress
omponents are used to determine a stable glassy system, where
ll the deformations are performed.

Some physical properties of the glassy Fe80Si10B10 are listed in
able 1. The shear modulus is calculated by rigid shear of the sys-
em and the bulk modulus is calculated from the pressure–volume
elation. There are all in good agreement with experimental results
8,9]. We also calculate the pair distribution function of the system
nd it is consistent with experiments. In addition, the cluster envi-
onment of atoms evaluated by Voronoi polyhedron analysis shows
hat there are no signatures of bcc or fcc crystalline structures in
he system. All these results suggest that the model system is in
ully amorphous state.

Tensile deformation and shear deformation in the glassy alloy
re performed, which simulate mode-I and mode-II fracture pro-
esses, respectively. The schematics are illustrated in the insets
f Fig. 1 and the fracture (YZ) plane is represented by the green
olid line. In the tensile deformation, glassy alloys at both sides
f the fracture plane are separated by a distance �x and atoms
re not allowed to relax. In the shear deformation, a relative dis-
lacement �y between glassy alloys at both sides of the fracture
lane is imposed along the fracture plane. In this case, the y- and
-coordinates of each atom are fixed in each ionic step of AIMD and
he atoms are relaxed only along the direction (x-) perpendicular
o the fracture plane. Fig. 1(a) and (b) shows the total free energy
f the systems under tension and shear deformations, respectively.

From Fig. 1(a) we can determine the surface energy of glassy
lloy to be �s = 1.6 J/m2 which equals to the energy necessary to cre-
te two fracture surfaces (with an area A = 1.07 nm2) of the left and
he right parts of the glassy system. In Fig. 1(a) we notice that the
tress along the tensile direction shows a maximum before fracture
ccurs, which indicates the activation of STZ. Based on the free-
olume model, we can define the surface energy of free-volume
efect to be � f = 0.51 J/m2.

Because of PBC, the shear deformation will not result in fracture
urfaces. This feature allows us to estimate the activation energy
f free-volume defects. In Fig. 1(b) we can find that within a shear-
ng distance of 0.204 nm the energy change of the system does not
xcess 0.01 eV. A sharp energy barrier of �U = 5.4 eV has to be over-
ome if the glassy alloy would be further deformed. The existence of
large energy barrier demonstrates that the STZ-induced heteroge-

eous deformation is the deformation mechanism of metallic glass
t low temperature, which is first proposed by Argon [5]. Hence
U = 5.4 eV is a fair estimate of the activation energy of free-volume

efect.
Lx = 2.036 nm. (b) Free energy of glassy alloy under shear deformation. Alloys at both
sides of the plane are sheared along the y-direction. Ly = 1.34 nm. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of the article.)

3. Continuum modeling of shear banding by phase-field
phenomenological model

The physical quantities obtained by AIMD simulation of
deformed metallic glass enable us to construct the energy land-
scape of a metallic glass consisting of free-volume defects. The
model is based on the definition of coarse-grained phase field for
free-volume distribution [10]. The free-volume density is defined
as �(�r) = (vi − v0)/(vm − v0), where vm is the maximum dilated vol-
ume when complete decohesion occurs at position r, vi is the atomic
volume defined as the volume of the so-called Voronoi polyhedron
of the ith atom, v0 is the atomic volume in the undeformed ideal ran-
dom close packing state. The free-energy functional of the metallic
glass is written as [11]

F =
∫ {

f (�, εij) + �0

2
[
•
�u]

2

+ 	

2
| �∇�|2

}
dV, (1)
where

f (�, εij) = e[εij] + a0

2
�2 + b0

3
�3 + c0

4
�4 +

(
a1

2
�2 + b1

3
�3

)
(e[εij] − e0), (2)
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ig. 2. (a) Phase-field model for amorphous Fe–Si–B metallic ribbon. A uniaxial ten
actors K = 44.1 and 117.6 MPa(m)1/2, respectively. Only a strip of the ribbon is show

e[εij] = 1
2

Cijklεklεij

Cijkl = �(ıikıjl + ıilıjk) + 
ıikıjl

(3)

nd εij is the strain tensor defined by the displacement field u
hrough the relation εij = (∂uj/∂xi + ∂ui/∂xj)/2; 
 is Lamé coeffi-
ient related to the bulk modulus B by B = 
 + 2�/3. e0 is the strain
nergy at the elastic limit. The gradient term of free-volume density
n Eq. (1) measures the “interfacial” energy between the deformed
nd undeformed regions and is defined as 	 = � fR where R is a
acroscopic length scale for shear band and could be measured

rom experiments.
The Fe80Si10B10 under a mode-I cracking at T = 300 K is simulated

y solving the equations for � and u written as follows:

�
∂�

∂t
= − ıF

ı�
= 	∇2� − (a0� + b0�2 + c0�3)

− �(a1 + b1�)(e[εij] − e0), (4)

0
∂2 �u
∂t2

= −∇ ·
[

ıF

ıεij

]
= �∇ ·

{[
1 + �2

(
a1

2
+ b1

3
�
)]

∇�u
}

, (5)
here �� = 0.2 ns is the characteristic time for free-volume activa-
ion. We use experiment data Tg = 620 K, R = 0.5 �m and fracture
train εf ∼ 1.8%. The coefficients are given by a0 = 4(2 − T/Tg)�U,
0 = −32�U, c0 = 16�U and we choose a1 = 4 and b1 = −9. We define
hat a shear band forms in a region where � > �c = 0.8.

ig. 3. (a) Shear stresses around the shear bands at various relative shear band thicknes
elocity and relative shear band thickness �w/w. Cs is the shear wave speed. The diamon
ifurcation, respectively.
tress is applied along the y-direction. (b and c) Shear bands under stress intensity
gray scales correspond to the free-volume density values of 1 − �.

The dimensions of a Fe80Si10B10 ribbon are 20 �m
× 20 �m × 5 �m. As shown in Fig. 2(a), there is an initial rectangu-
lar crack with a length l = 0.4 �m and a width of 0.04 �m. The shear
banding is successfully captured by the phase-field model, and we
find that the shear band can be initiated from the initial crack when
the stress intensity factor reaches K = 

√
l� = 40.3 MPa(m)1/2.

When K > KIC = 44.1 MPa(m)1/2 the crack starts to propagate,
resulting in either wavy cracks (Fig. 2b) or highly bifurcated
cracks (Fig. 2c). These results are consistent with the experimental
observation of the mode-I cracking of glassy Fe–Si–B ribbon
[3]. The fracture toughness KIC estimated from the modeling
is also comparable with that measured in Fe80Si10B10 metallic
glass [3].

Combined with the first-principles calculation of the param-
eters necessary to construct the free-energy functional (Eq. (1)),
the phase-field continuum modeling thus provides us a useful tool
to investigate the shear banding in the metallic glass under plas-
tic deformation. One of the important immediate applications is
to characterize the shear band thickness and the stress state near
the shear band. It is general believed that shear bands are the only
region of metallic glass to suspend the plastic deformation. Charac-
terization of the micromechanics of shear band would allow us to
quantitatively relate the microscopic shear banding to the macro-

scopic mechanical behaviors of materials.

As shown in Fig. 3(a), we measure the relative shear band thick-
ness �w/w and the shear stress � near the shear band, where �w is
defined as the change of shear band thickness during the advance

ses �w/w. The solid line is the fit of Eq. (6). (b) Relationship between shear band
d, triangle and square symbols represent shear band initialization, propagation and
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f shear band along its propagation direction with a distance w. The
elation between � and �w/w is linear and is expressed as

= 2.04 + 1.08
�w

w
(GPa) (6)

The arrow in Fig. 3(a) indicates the upper limit of �w/w in Eq.
6). Shear band bifurcation occurs when �w/w > 0.2. It can be
ound in Eq. (6) that the critical shear stress to initial a shear band
s 2.04 GPa corresponding to �w/w = 0, which is comparable with
he flow strength (3.8 GPa) from experimental measurement [8].

Another important application of the multi-scale modeling is
o investigate the shear band kinetics. Fig. 3(b) shows the vari-
tion of shear band velocity with relative shear band thickness
w/w. There are three stages of shear band movement as shown

n Fig. 3(b), i.e., initiation and propagation, growth and bifurcation.
t is shown in Fig. 3(b) that the shear band attains its maximum
elocity when the bifurcation occurs. Because shear band branching
r bifurcation is close related to macroscopically observed defor-
ation behavior of serrated flow which is strain-rate dependent,

t is suggested the shear band kinetics can be used to interpret
uch unique and important deformation characteristics in metallic
lasses.

. Concluding remarks

Multi-scale modeling methods are developed to investigate the
hear banding in iron-based metallic glasses. We first calculate in
tomic scale the physical quantities such as the surface energy,
ctivation energy and elastic constants that are related to the for-

ation of free-volume defects using density functional theory. The

ree-energy functional of a metallic glass consisting of free-volume
efects is then constructed and the deformation behaviors of the
etallic glass are modeled by the mesoscopic phase-field model.

he mechanical properties such as fracture toughness and yield

[
[
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strength of Fe–Si–B glassy alloys obtained from the simulation are
in good agreement with experiments. In particular, using these
multi-scale approaches, shear banding phenomenon and kinetics
are quantitatively characterized, which have not been comprehen-
sively investigated by any other simulation methods up to date.
Because the approaches developed in this study are general, they
are not restricted to simulate iron-based metallic glass in atom-
istic and mesoscopic scales. Instead they can be used to investigate
the deformation behaviors of other glassy alloy systems and glass
alloys with larger sizes such as BMGs.
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